Тема 6. ОБРАБОТКА ОТВЕРСТИЙ

Цель – изучение технологических возможностей лезвийной обработки отверстий на вертикально-сверлильных и координатно-расточных станках, основных узлов станков и их назначения, инструментов для выполнения разных видов обработки; получение практических навыков наладки станков и работы на них.

Содержание

- 6.1. Виды отверстий и их назначение
- 6.2. Характеристика видов лезвийной обработки отверстий
- 6.3. Технологическое оборудование и его назначение
- 6.4. Установка заготовок и режущих инструментов на станках Вопросы для самопроверки

6.1. Виды отверстий и их назначение

На вертикально-сверлильных и координатно-расточных станках получают и обрабатывают цилиндрические, конические, резьбовые и ступенчатые отверстия (как правило, в заготовках, не являющихся телами вращения). Отверстия в деталях имеют различное служебное назначение. Их используют для соединения деталей в узлы, установки крепежных элементов (болтов, винтов, штифтов, шпилек, шайб) и т.д.

6.2. Характеристика видов лезвийной обработки отверстий

На сверлильных и расточных станках для изготовления отверстий используют разные виды лезвийной обработки (рис. 6.1, 6.2): сверление, рассверливание, зенкерование, развертывание, зенкование, цекование, снятие фасок, растачивание, нарезание резьбы и др.

Сверление. Применяют для получения сквозных и глухих отверстий в сплошном материале заготовки спиральным сверлом. При этом диаметр обрабатываемых отверстий обычно не превышает Формообразование поверхностей при сверлении (см. рис. 6.1, а) осуществдвижениями, которые сообщаются инструменту: ляется двумя вращательным и поступательным. Вращение инструмента является движением резания $D_{\rm r}$ кинематически воспроизводит И направляющую окружность 2. Непрерывное прямолинейное движение инструмента в вертикальной плоскости является движением подачи D_{S_n} и воспроизводит образующую I (см. рис. 5.1, a).

За скорость главного движения резания при сверлении принимают окружную скорость точки режущей кромки инструмента, наиболее удаленной от оси сверла:

$$v = \pi dn / (60.1000)$$
 M/c,

где d — диаметр спирального сверла, мм; n — частота вращения режущего инструмента, мин⁻¹.

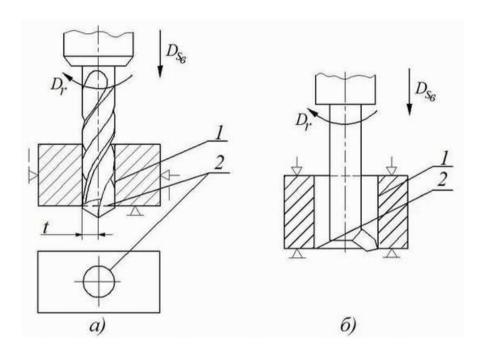


Рис. 6.1

Подачей $S_{\rm B}$, мм/об, при сверлении называют перемещение сверла в вертикальной плоскости за один его оборот.

При сверлении отверстия в сплошном материале глубина резания t, мм, равна половине диаметра сверла. Ее измеряют в плоскости, перпендикулярной направлению подачи: t = d/2.

Просверленные отверстия имеют параметр шероховатости Ra=5...16 мкм и точность, соответствующую 12...14-му квалитету. Большая сила резания, смятие (а не резание) при сверлении из-за поперечной режущей кромки сверла, а также нежесткость сверла, его консольное закрепление приводят к тому, что даже малые неточности в заточке, отклонения от симметричности конструкции режущей части могут вызвать увод оси сверла (при глубине сверления $L \ge 5d$) и «разбивку» отверстия (увеличение его диаметра по сравнению с диаметром сверла). Для спиральных сверл «разбивка» составляет 1% от диаметра сверла. Поэтому отверстия, полученные сверлением, как правило, имеют, отклонения формы в продольном и поперечном сечениях, а также отклонение расположения оси отверстия от базовых поверхностей изделия. Просверленные отверстия

обычно используют для болтовых соединений либо для последующего нарезания резьбы.

Рассверливание. Вид обработки, предназначенный для увеличения диаметра ранее просверленного отверстия (см. рис. 6.2, *a*), спиральным сверлом большего диаметра (более 15 мм). Параметры шероховатости и точности такие же как при сверлении. Глубина резания при рассверливании:

$$t = (D - d) / 2$$
,

где D — диаметр инструмента, мм; d — диаметр обрабатываемого отверстия, мм.

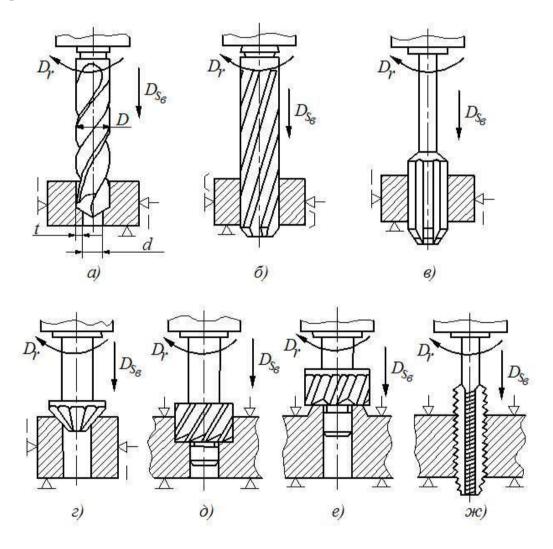


Рис. 6.2

Зенкерование. Применяют для обработки глухих и сквозных отверстий, предварительно подготовленных сверлением либо полученных в заготовках литьем, ковкой или штамповкой (см. рис. 6.2, δ). Различают черновое и чистовое зенкерование. Обработку выполняют

многолезвийным инструментом — зенкером. По сравнению со сверлом зенкер имеет большее число режущих лезвий и большую жесткость. Меньшая глубина и меньшая сила резания позволяет получить отверстие более точное по геометрической форме и размерам $(8...12\ квалитет\ точности)$ и шероховатость обработанной поверхности $Ra=3,2...10\ мкм$.

Развертывание. Применяют ДЛЯ окончательной цилиндрических и конических отверстий (см. рис. 6.2, в), обычно после растачивания. Различают зенкерования или следующие развертывания: черновое (нормальное), чистовое (точное) и тонкое. При развертывании достигается точность, соответствующая 6...9-му квалитету, и шероховатость Ra = 0.32...1,25 мкм. Развертывание осуществляют развертками, представляющими собой многолезвийный инструмент с четным числом режущих лезвий. Стандартные цельные машинные развертки в зависимости от их диаметра имеют 6...14 режущих лезвий. Например, если диаметр развертки не превышает 10 мм число лезвий равно 6, у разверток диаметром 11...19 мм число лезвий равно 8 и т.д. Большое число режущих лезвий, малые толщины среза (глубина резания t= 0,1...0,4 мм) и наличие калибрующей части обеспечивают высокую точность обработки.

При зенкеровании и развертывании глубина резания t = (D - d) / 2.

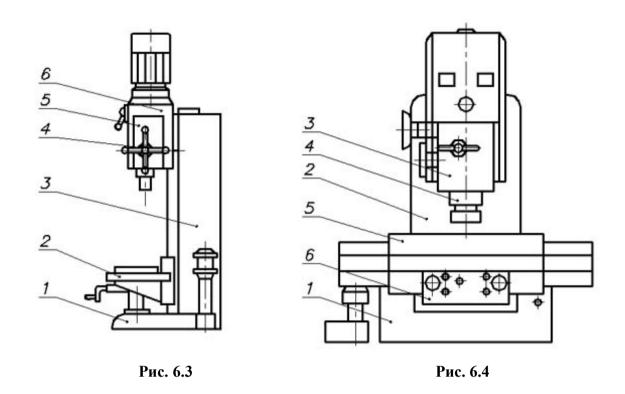
Зенкование. Применяют для получения конических и цилиндрических углублений под головки винтов и болтов, в предварительно обработанных отверстиях (см. рис. 6.2, ε , ϑ). Обработку выполняют зенкерами и зенковками.

Цекование. Используют для обработки плоских поверхностей со стороны торца отверстия, которые служат опорными поверхностями под крепежные детали. Этот вид обработки обеспечивает перпендикулярность оси отверстия к опорной поверхности. Обработку осуществляют зенковкой-подрезкой, цековкой (см. рис. 6.2, *e*).

Нарезание резьбы. Машинный способ (на станках) применяют для нарезания резьбы треугольного профиля всех размеров в сквозных и глухих отверстиях. Обработка осуществляется машинными или машинноручными метчиками (см. рис. $6.2, \mathcal{H}$).

Растачивание. Как правило, применяют для обработки отверстий больших размеров (более 40 мм), предварительно подготовленных либо полученных в заготовках сверлением литьем, ковкой штамповкой, а также отверстий нестандартных размеров, для которых отсутствует осевой инструмент. Наиболее часто растачивание используют для обработки отверстий в корпусных деталях. Обработку выполняют расточными резцами с одним лезвием или многолезвийным инструментом (пластинчатые резцы др.). Растачивание используется И предварительная обработка заготовок (параметр шероховатости Ra =6,3...12,5 мкм и точность по 10...13-му квалитету) и как окончательная

(параметр шероховатости Ra = 0,2...0,8 мкм и точность по 5...7-му квалитету).


Формообразование при растачивании осуществляется по методу следов: направляющая окружность 2 (см. рис. 6.1, 6) воспроизводится вращательным движением инструмента, которое является главным движением резания и определяет скорость резания v. Поступательное движение инструмента (движение подачи) воспроизводит прямую – образующую 1.

6.3. Технологическое оборудование и его назначение

На вертикально-сверлильном станке выполняют обработку отверстий невысокой точности сверлением, рассверливанием, зенкерованием, развертыванием, зенкованием, цекованием и нарезанием резьбы.

координатно-расточном станке, как правило, выполняют отверстий, растачивание высокоточных центры которых координированы относительно базовых поверхностей заготовок, а также инструментом: зенкерование, обработку осевым развертывание, зенкование, цекование и др. Кроме того, на станке можно выполнить разметку, контроль линейных размеров обработанных поверхностей и межцентровых расстояний. Координатно-расточной станок позволяет обрабатывать корпусные детали.

Основные узлы вертикально-сверлильного станка модели 2H125. На фундаментной плите I (рис. 6.3) закреплена колонна 3, на вертикальных направляющих которой установлены стол 2 и сверлильная головка 6. Стол и сверлильная головка могут перемещаться по направляющим колонны. В сверлильной головке расположен шпиндель, в котором устанавливают режущий инструмент. Коробка подач 4 и коробка скоростей 5, изменяют вертикальную подачу и частоту вращения шпинделя соответственно.

Основные узлы координатно-расточного станка модели 2Б440А. На станине станка *I* (рис. 6.4) жестко закреплена стойка *2* с расточной головкой *3*. По направляющим станины в продольном направлении перемещаются салазки *6*, по верхней части которых в поперечном направлении движется стол *5*. Стол и салазки оснащены направляющими качения. На станке имеется оптическая система отсчета перемещений стола и салазок, обеспечивающая гарантированную точность установки их координат (0,004 мм). В расточной головке расположены коробка скоростей и привод вертикальной подачи шпинделя *4*.

6.4. Установка заготовок и режущих инструментов на станках

При обработке на вертикально-сверлильных и координатнорасточных станках заготовки устанавливают и закрепляют на столе станка с помощью универсальных или специальных приспособлений (см. рис. 6.5). Способ закрепления заготовки выбирают в зависимости от ее формы и размера.

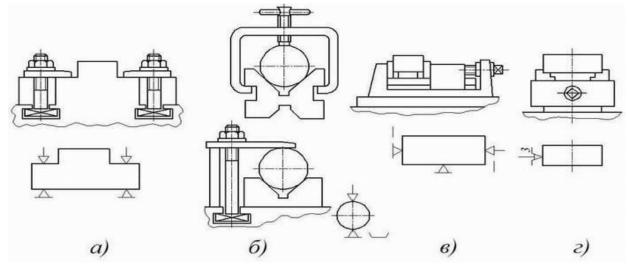


Рис. 6.5

Прижимные планки применяют при закреплении заготовок сложной формы или больших габаритных размеров в условиях единичного изготовления деталей (см. рис. 6.5, *a*). При обработке сквозных отверстий заготовку устанавливают на подкладки, что обеспечивает свободный выход инструмента из отверстия.

Установку на призме и закрепление струбциной (или прижимными планками) применяют при обработке отверстий на цилиндрической поверхности заготовки типа вала (см. рис. 6.5, δ). Длинные заготовки (например, валы) устанавливают на две призмы. Машинные тиски используют для установки и закрепления заготовок небольших размеров с плоскими торцами (см. рис. 6.5, ϵ). При обработке сквозных отверстий заготовку в машинных тисках устанавливают на подкладки.

Закрепление в трехкулачковом патроне применяют при обработке отверстий в торцах заготовках, имеющих цилиндрическую форму (см. рис. 6.5, г). Патрон крепят на столе станка.

На вертикально-сверлильном станке при установке заготовки необходимо обеспечить совпадение оси вращения шпинделя с осью обрабатываемого отверстия. Это достигается совмещением вершины сверла с размеченным и накерненным (см. тему 12) центром отверстия перемещением заготовки по столу станка.

На координатно-расточном станке для установки стола с закрепленной заготовкой в положение, при котором базовая исходная точка совпадает с осью шпинделя, применяют центроискатель, а также оптические устройства отсчета координат перемещения стола и салазок. Это обеспечивает изготовление отверстий с высокой точностью межосевых расстояний (до 0,004 мм) и высокой точностью их формы.

Способ установки режущего инструмента на вертикальносверлильном станке зависит от формы хвостовика и условий работы (рис. 6.6). Инструменты с коническим хвостовиком I устанавливают непосредственно в шпиндель 2 станка (см. рис. 6.6, a) или с помощью переходных конических втулок 3 (см рис. 6.6, 6), если размер конуса хвостовика инструмента меньше размера конического отверстия шпинделя. Инструмент с цилиндрическим хвостовиком 4 устанавливают в цанговом 5 (см. рис. 6.6, e) или кулачковом 6 (см. рис. 6.6, e) сверлильных патронах. При необходимости последовательной смены инструментов используют быстросменные патроны 7 (см. рис. 6.6, a).

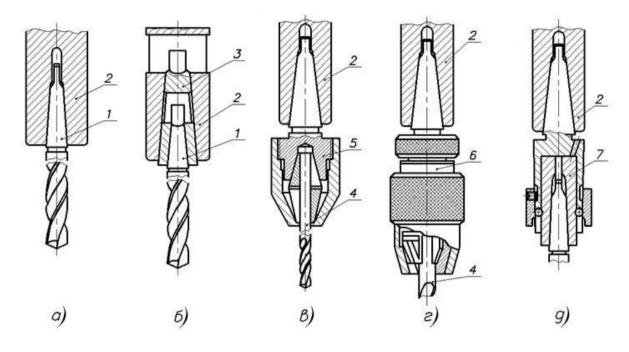


Рис. 6.6

Развертку закрепляют в качающемся, плавающем или самоустанавливающемся патронах, которые во время работы позволяют инструменту свободно устанавливаться по отверстию и иметь точное направление. При нарезании резьбы в сквозных отверстиях метчики крепят в быстросменном, качающемся и плавающем патронах, а в глухих отверстиях — в предохранительном патроне.

На координатно-расточном станке режущий инструмент (сверло, зенкер и т.п.) с коническим хвостовиком I (рис 6.7) устанавливают в шпинделе станка 2 в переходных втулках 3 (рис. 6.7, a, δ), а с цилиндрическим хвостовиком 4 – в державке с цанговым зажимом 5 (см. рис. 6.7, ϵ).

Расточные резцы I (рис. 6.8) на координатно-расточном станке устанавливают в консольных державках 3, закрепленных в шпинделе 2, с наклонной (см. рис. 6.8, a) или прямой (см. рис. 6.8, b) установкой резца, а также в универсальном резцедержателе, конструкция которого позволяет осуществить механическую подачу в радиальном направлении во время вращения шпинделя.

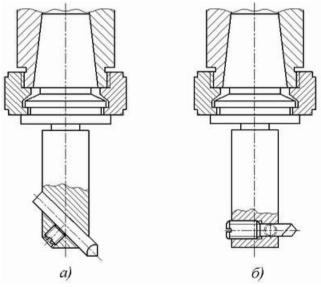


Рис. 6.8

Вопросы для самопроверки

- 1. Какие виды обработки отверстий выполняют на вертикально-сверлильном станке?
- 2. Дайте характеристику различных видов лезвийной обработки отверстий.
 - 3. Каково назначение координатно-расточного станка?
 - 4. Как выбирают способ установки заготовки на станках?

- 5. От чего зависит способ установки и закрепления режущего инструмента на станках?
- 6. Какие методы формообразования используют при зенкеровании и развертывании?
- 7. Что называют режимом резания при сверлении и как определяют его параметры?