
Последовательностные цифровые устройства (ПЦУ)

Последовательностные цифровые устройства (ПЦУ) характеризуются тем, что выходные сигналы зависят не только от текущих значений входных сигналов, но и от последовательности значений входных сигналов, поступивших на входы в предшествующие моменты времени. Структурная схема ПЦУ показана на рисунке:

КЦУ — комбинационное цифровое устройство, ЗУ — запоминающие устройство, Т1, Т2 ...ТК — ячейки памяти (триггер), т. е. ПЦУ обладают памятью.

Триггеры

Триггер — простейшее ПЦУ, предназначенное для записи и хранения одноразрядных двоичных чисел.

Входные триггера разделяются на информационные и управляющие. Информационные входы обозначаются следующим образом:

S — вход для установки в состояние «1»;

R — вход для установки в состояние «0»;

J — вход для установки в состояние «1» в универсальном триггере;

К- вход для установки в состоянии «0» в универсальном триггере;

Т — счётный (общий) вход;

D — вход для установки в состояние «1» или состояние «0».

Управляющие входы обозначаются:

V — для разрешения приёма информации (иногда обозначается буквой E);

С — Вход синхронизации.

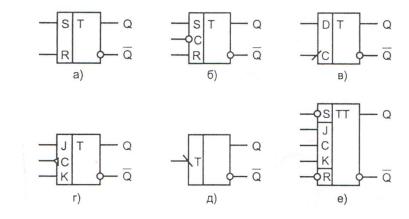
Триггеры имеют 2 выхода; Q — прямой, Q — инверсный.

Триггеры можно классифицировать по способу приёма информации, принципу построения, функциональным возможностям.

По способу приёма информации триггеры подразделяются

на асинхронные и синхронные. Асинхронные триггеры воспринимают информационные сигналы и реагируют на них в момент появления на входах триггера. Синхронные триггеры реагируют на информационные сигналы при наличии разрешающего сигнала на специальном управляющем входе С, называемом входом синхронизации. Синхронные триггеры подразделяются на триггеры со статическим и динамическим управлением по входу С. Триггеры со статическим управлением воспринимают информационные сигналы при подаче на С — вход уровня 1 (прямой С — вход). Триггеры с динамическим управлением воспринимают формационные сигналы при изменении сигнала на С — входе от 0 к 1(прямой динамический С — вход) или от 1 к 0 (инверсный динамический С — вход).

По принципу построения триггеры со статическим управлением делятся на одноступенчатые и двух ступенчатые. Одноступенчатые триггеры характеризуются наличием одной ступени запоминания информации, двухступенчатые триггеры имеют две ступени запоминания информации. Вначале информация записывается в первую ступень, а затем переписывается во вторую и появляется на выходе.


Двухступенчатый триггер обозначают через TT.

По функциональным возможностям триггеры разделяются на следующие классы:

- с раздельной установкой состояния 0 и 1 (RS триггеры);
- универсальные (JK триггеры)
- с приемом информации по одному входу D (D-триггеры)
- со счётным входом T (T триггеры).

Независимо от вида, если Q = 1 и Q = 0, то триггер находится в единичном состоянии. При Q = 0, Q = 1 состояние триггеры называется нулевым.

Ниже приведены графические обозначения (УГО) триггеров, принятые в системе ЕСКД:

- А) асинхронный RS синхронный триггер;
- Б) синхронизируемый RS триггер. Синхронизация производится логическим 0;
- В) D триггер, срабатывающий на передний фронт 0,1;
- Г) ЈК триггер, срабатывающий по фронту 1, 0;

- Д) Т триггер, срабатывающий по фронту 1, 0;
- E) двухступенчатый JK триггер со входами разделённой установки в нулевое (R) и единичное (S) состояние.

Функционирование триггеров описывается таблицами переходов (истинности):

Т-триггеры

Входы	Выходы
T	Q
0	исх.
1	\overline{Q}_{n-1}

jk-триггеры

Входы		Выходы		
j	k	Q		
0	0	исх.		
0	1	0		
1	0	1		
1	1	\overline{Q}_{n-1}		

«ИСХ» — означает режим хранения (исходное состояние или без изменения).

«НЕОПР» — означает, что состояние выходов неопределённое, т. е. комбинация сигналов R = S = 1 является запрещённой.

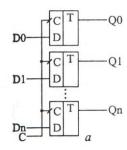
Вт — триггере при T = 1 триггер переходит в инверсивное состояние Q_{n-1} (счётный режим). В JK — триггере при J = K = 1 триггер переходит в инверсное состояние Q_{n-1} (счётный режим). Q_{n-1} — состояние выхода, предшествующее появлению информационных сигналов.

Регистры

Регистр — это последовательное логическое устройство, используемое для хранения n — разрядных двоичных чисел и выполнения преобразований над ними. Регистр представляет собой упорядоченную последовательность триггеров, число которых соответствует числу разрядов в слове (обычно от 4 до 16). На схемах регистры обозначаются буквами RG. Регистр обеспечивает выполнение следующих типичных операций:

- приём слова в регистр;
- передача слова из регистра;
- поразрядные логические операции;
- сдвиг слова влево или вправо на заданное число разрядов;
- преобразование последовательного кода слова в параллельный и обратно;
- установка регистра в начальное состояние (сброс).

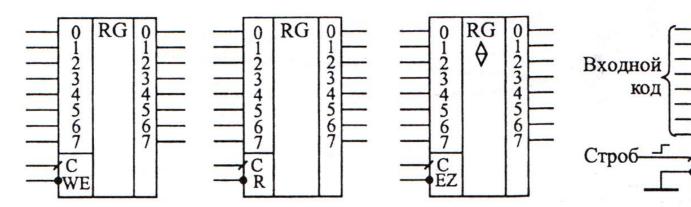
Регистры классифицируются по следующим видам:


- накопительные (регистры памяти, хранения);
- сдвигающие

в свою очередь сдвигающие регистры делятся:

о по способу ввода-вывода информации на

- о параллельные,
- о последовательные,
- 。 комбинированные;
- 。 по направлению передачи информации на
- однонаправленные
- о реверсивные


Структура параллельного регистра показана на рисунке:

Основой его являются D — триггеры. Каждый из триггеров имеет свой независимый информационный вход (D) и свой независимый информационный выход. Тактовые входы © всех триггеров соединены между собой. В результате параллельный регистр представляет собой многоразрядный, многовходовый триггер.

D — триггеры на своих выходах повторяют значения сигналов на входах D₀ — D₀ (информационные входы) при действии управляющего сигнала C, т. е. осуществляется параллельный ввод входной информации в регистр.

В стандартные серии входит несколько типов параллельных регистров, срабатывающих по фронту:

Различаются регистры количеством разрядов, наличием или отсутствием входа сброса (-R) или разрешения записи (-WE), а также типом выходных каскадов (2С или 3С) и соответственно наличием или отсутствием входа разрешения —EZ. Иногда на схемах тактовый вход С обозначается WR — сигнал записи в регистр.

Представление цифровых данных, каждому биту которых выделена отдельная линия шины, называется параллельным кодом. На рисунке показаны параллельные входной и выходной коды, передача которых

осуществляется одновременно по всем выделенным линиям. Структура сдвигового регистра показана на рисунке:

В сдвиговых регистрах все триггеры соединены в последовательною цепочку (выход каждого предыдущего триггера соединён со входом D следующего триггера). Тактовые входы всех триггеров © объединены между собой. В результате такой триггер может рассматриваться как линия задержки, входной сигнал которой последовательно перезаписывается из триггера в триггер по фронту тактового сигнала С. В сдвиговом регистре цифровой код представляется временным рядом логических уровней, соответствующих значениям разрядов. Такой код называется последовательным. Каждый бит этого кода передаётся по одной и той же линии. В качестве примера приведем микросхему сдвигающего регистра и его таблицу состояний:

VOI S S LIDIO							· ·	
К1 55 ИР1 3	R C	SI	S0	DR	DL	$Q_1 \dots Q_8$	Режим	
11 C RG	1	1	1	1	*	Q ₁ Q ₈	Параллельный	
2 — DR RG 22 — DL							ввод	
23 — S1 Q ₁	1 _	0	0	*	*	D_1D_8	Хранение	
$ \begin{array}{c cccc} 1 & S0 & Q_2 \\ 2 & D1 & Q_3 \end{array} $	1	1	0	*	0	Q2Q8 0	Сдвиг влево	
5 — D2 Q4	1 5	1	0	*	1	Q2Q8 1	Сдвиг влево	
7 — D3 9 — D4	1	0	1	0	*	0 Q ₁ Q ₇	Сдвиг вправо	
$\begin{array}{c c} 9 & D4 \\ 15 & D5 \end{array}$	1	0	1	1	*	1 Q ₁ Q ₇	Сдвиг вправо	
17 D6 Q ₈	0 *	*	*	*	*	00	Сброс	
19 — D7 21 — D8	Знак * означает любое состояние.							
21 D8 13 PR	Знак — означает передний фронт импульса.							

Микросхема К155ИР13 является универсальным восьмиразрядным реверсивным сдвигающим регистром и может работать в режимах последовательного ввода информации со сдвигом вправо или влево, параллельного ввода информации, хранения информации, сброса (установки нулей).

Микросхема имеет следующий вход:

D1 — D8 — для параллельного ввода информации, DR и DL информационные входы для последовательного ввода информации при сдвиге соответственно вправо или влево, входы S1 и S0 — для выбора режима работы, R — вход сброса триггеров регистра в нулевое состояние и С — вход синхронизации.

Сброс триггеров осуществляется при подаче логического 0 на вход R. При S1 = 0 и S0 = 1 осуществляется последовательный ввод информации со входа DR в первый разряд регистра со сдвигом вправо. При S1 = 1, S0 = 0 осуществляется последовательный ввод информации со входа DL в восьмой разряд регистра со сдвигом влево.

При S1 = S0 = 1 осуществляется параллельная запись информации со входов D1 — D8 при воздействии положительного перепада на входе синхронизации С.

При S1 = S0 = 0 осуществляется режим хранения информаци